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Abstract

We prove Noether’s direct and inverse second theorems for Lagrangian systems
on fibre bundles in the case of gauge symmetries depending on derivatives of
dynamic variables and parameters of an arbitrary order. The appropriate notions
of a reducible gauge symmetry and Noether identity are formulated, and their
equivalence by means of a certain intertwining operator is proved.
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1. Introduction

Different variants of Noether’s second theorem state that, if a Lagrangian admits symmetries
depending on parameters, its variational derivatives obey certain relations, called the Noether
identity. In arather general setting, this theorem has been formulated in [8]. Gauge symmetries
and Noether identities need not be independent, and one speaks of N-stage reducible gauge
symmetries and Noether identities. The notion of a reducible Noether identity has come
from that of a reducible constraint [7], but it involves differential operators. Note that the
conventional Batalin—Vilkovisky (BV) quantization of a classical gauge system necessarily
starts with studying an hierarchy of its gauge symmetries and Noether identities in order
to define the multiplet of ghosts and antifields, and to construct the so-called gauge-fixed
Lagrangian [2, 13]. It should also be emphasized that, if a gauge symmetry is reducible, the
components of a Noether current in classical field theory and the Ward identities in quantum
field theory fail to be independent.

We present Noether’s second theorem and its inverse (theorem 4.2) for Lagrangian systems
on a fibre bundle Y — X in the case of gauge symmetries depending on derivatives of dynamic
variables and parameters of an arbitrary order. Bearing in mind the extension of the BV
quantization scheme to an arbitrary base manifold [3, 12], we pay particular attention to global
aspects of Noether’s second theorem. For this purpose, we consider a Lagrangian formalism
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on the composite fibre bundle E — Y — X, where E — Y is a vector bundle of gauge
parameters. Accordingly, a gauge symmetry is represented by a linear differential operator v
on E taking its values in the vertical tangent bundle VY of ¥ — X.

The Noether identity for a Lagrangian L is defined by a differential operator A on the
fibre bundle (2.12) which takes its values in the density-dual

E =E*@QAT'X (1.1)
Y
of E — Y and whose kernel contains the image of the Euler—Lagrange operator §L of L, i.e.,

AodL =0. (1.2)

Expressed in these terms, Noether’s second theorem and its inverse follow at once from the
first variational formula (proposition 3.1) and the properties of differential operators on dual
fibre bundles (theorem 8.1). Namely, there exists the intertwining operator n(v) = A (A.4),
n(A) = v (A.5) such that

n(n)) = v, n(n(A)) = A, (1.3)
n(vov) =n")on(v), n(A" o A) =n(A) on(A). (1.4)

The appropriate notions of a reducible Noether identity and gauge symmetry are formulated,
and their equivalence with respect to the intertwining operator 7 is proved (theorem 5.3).

The following two examples aim to illustrate our exposition: (i) the gauge theory
of principal connections for which gauge transformations need not be vertical, e.g., the
topological gauge theory with the global Chern—Simons Lagrangian and the Yang—Mills
gauge theory with a dynamic metric field, (ii) a gauge system of skew symmetric tensor fields
with a reducible gauge symmetry, e.g., the topological BF theory.

2. Lagrangian formalism on fibre bundles

The Lagrangian formalism on a fibre bundle ¥ — X is phrased in terms of the following
graded differential algebra (henceforth GDA) [1, 10, 12, 15]. The finite-order jet manifolds
of Y — X form an inverse system

T n(% 1 r—1 - r
X«<—Y<«—JY<«— - J7Y<—JY «— .-, 2.1

In the following, the index » = 0 stands for Y. Accordingly, we have the direct system

roox

* 1
00X 50y 0ty — - 0F YIS0y —> - 2.2)

of GDAs OFY of exterior forms on jet manifolds J"Y with respect to the pull-back
monomorphisms 7r;_,*. Its direct limit O} [Y] is a GDA consisting of all exterior forms
on finite-order jet manifolds modulo the pull-back identification.

The projective limit (J°°Y, X JY = J Y) of the inverse system (2.1) is a Fréchet

manifold. A bundle atlas {(Uy; x*, y)} of ¥ — X yields the coordinate atlas

oxH

-1 i /i 1i
{((=6°) " Wy x*, yi)} Yosa = mdMYA» 0 < [Al (2.3)
of J*Y, where A = (Ay - - - A1) is a symmetric multi-index, A + A = (AX - - - A1), and
dy =0+ Y yia00 dy=dy, o ody, (2.4)

0<I[A]
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are total derivatives. There is the GDA epimorphism O} [Y] — O [Uy] obtained as the
restriction of O Y to chart (2.3). Then O} [Y] can be written in a coordinate form where
the horizontal 1-forms {dx*} and the contact 1-forms {0} = dy} — yi,, dx*} are generating
elements of the Ogo[Uy]—algebra O% [Uy]l. Though J*°Y is not a smooth manifold, the
coordinate transformations of elements of O [Y ] are smooth since they are exterior forms on
finite-order jet manifolds.

There is the canonical decomposition O} [Y] = EB(’)&’”[Y ] of O%[Y] into Ogo[Y 1-
modules OX™[Y] of k-contact and m-horizontal forms together with the corresponding
projectors

hi : O [Y] — 0¥ (Y], h" L O5[Y] — OL"[Y].

Accordingly, the exterior differential on O} [Y] is split into the sum d = dy + dy of the
nilpotent total and vertical differentials

dy(@) = dx* Adi(¢).  dv(®) =0, AD$. P eOLIY].
In particular, any finite-order Lagrangian on a fibre bundle ¥ — X is a density
L=LweO%Y], w=dx" A Adx", n = dim X. (2.5)

In the framework of Lagrangian formalism, we deal with differential operators of the following
type. Let

W—->Y—>X, Z—->Y—>X

be composite bundles, including W = Y, and let Z — Y be a vector bundle. By a kth-order
differential operator on W — X taking its values in Z — X is throughout meant a bundle
morphism

A JkW—Y> Z. (2.6)
Its kernel Ker A is defined as the inverse image of the canonical zero section of Z — Y. In

an equivalent way, the differential operator (2.6) is represented by a section A of the vector
bundle J¥W x Z — J*W. Given bundle coordinates (x*, y', w") on W and (x*, y’, z4) on
Y

Z with respect to the fibre basis {e4} for Z — Y, this section reads

A = AMNxM v, wh)ea. 0<|A| < k. 2.7
Then the differential operator (2.6) is also represented by an element
A= AN XMy, wh)za € OLIW x Z¥] (2.8)

of the GDA O [W x Z*], where Z* — Y is the dual of Z — Y with coordinates (x*, y, z4).
X

If W — Y is a vector bundle, a differential operator A (2.6) on the composite bundle
W — Y — X is said to be linear if it is linear on the fibres of the vector bundle J*W — JXY.
In this case, its representations (2.7) and (2.8) take the form

A= Y AME(X yh)whea, 0 < |A| <k, (2.9)
0< ||k

A= Y AFME( yh)whza, 0<|A| <k, (2.10)
0<IEISk

In particular, every Lagrangian L (2.5) defines the Euler—Lagrange operator

SL = Z (—D'™Mdy (80 L) dy' A (2.11)
0<[A|
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on Y taking the values in the vector bundle

V*Y®£\T*X Y. 2.12)
Y
It is represented by the exterior form
SL=&6 Ao = Z (—D!Mdy (82 L)0" A w € OL'YT, (2.13)
0<IA]
where
S = Z (—DMO" A [da (3 1dg)], ¢ € OX"[Y], (2.14)
0<IA]

is the variational operator acting on O%*[Y] so that § o dy = 0 and 6 o § = 0. There is the
canonical decomposition

dL =46L —dy&, (2.15)
where E; = L + E is a Lepagean equivalent of L. It reads

- AVge-vy i
E, =L+ E F; O, ..o, N O,
s=0

FX" =ML — d F Y, = 8o,

1

where functions / obey the relations i = 0, hf""vk")mvl =01[14].

Remark 2.1. Given a Lagrangian L and its Euler—Lagrange operator § L (2.13), we further
abbreviate A ~ 0 with an equality which holds on-shell. This means that A is an element of
a module over the ideal I, of the ring O% [Y] which is locally generated by the variational
derivatives &; and their total derivatives d &;. One says that I} is a differential ideal because,
if a local function f belongs to I, then every total derivative d f does as well.

Remark 2.2. We will use the relations

Z Brd A = Z (=DM (BMA +dyo, (2.16)
0<|AI<k 0<|A <k

Y =DMdABYA) = Y n(B)daA4, 2.17)
[UNPINES 0<|AISk

b!
A _ _ 1\IZ+A ~IZ] T+A a __
1B = D (CDFNCOL A BT G = oo (2.18)
0|2 [<k—]A]

for arbitrary exterior forms A" € O%"[Q], A € O} [Q] and local functions BA e OgO[Q] on
jet manifolds of a fibre bundle 0 — X. Since Z];:O(—l)“c,‘j = 0 for k > O, it is easily
verified that

(mon)(B)* = B, (2.19)

3. Gauge symmetries in a general setting

Let 002 Y be the O [Y]-module of derivations of the R-algebra O° [Y]. Any © € D0 Y
yields a graded derivation (the interior product) ¥ |¢ of the GDA O} [Y] given by the relations
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Sldf =9 (f), f e oIyl
F(p o) = @]p) Ao+ (=D A ]0), ¢,0 € OL[Y],

and a derivation Ly (the Lie derivative) which satisfies the conditions

Ly¢ =0 ]dg +d(¥ ¢), ¢ € OLIY], 3.
Ly(@A¢) =Ly(@) A"+ ¢ ALy, (3.2)
Ly(dn) = du(Ly@). (3.3)

Relative to an atlas (2.3), a derivation 9 € DOgOY reads
9 =040+ 00+ Y 030 (3.4)
|A[>0
where the tuple of derivations {9, 3/} is defined as the dual of the set {dx*, dy}, } of generating
elements for the Ogo [Y]-algebra O} [Y] with respect to the interior product | [12].
A derivation ¢ (3.4) is called contact if the Lie derivative Ly (3.1) preserves the contact
ideal of the GDA O} [Y] generated by contact forms. A derivation ¢ (3.4) is contact iff
Oy =da (0 — ¥, 0") + v, 00", 0 < |Al (3.5)

Any contact derivation admits the canonical horizontal splitting

O =0n+0y =0"d+ [vio;+ Y dav'df |, vl =0l — ok, (3.6)
0<|A
Its vertical part ¥y is completely determined by the first summand
v="0'(x*y})d;, 0<|A| < k. 3.7)
This is a section of the pull-back VY >; J¥Y — J*Y of the vertical tangent bundle VY — Y

onto JXY [6] and, thus, it is a kth-order VY-valued differential operator on Y. One calls v
(3.7) a generalized vector field on Y.

Proposition 3.1. [t follows from splitting (2.15) that the Lie derivative of a Lagrangian L
(2.5) along a contact derivation ¥ (3.9) fulfils the first variational formula

LlyL = UJ8L+dH(h()(l?J EL))+£dv(l9HJa)), (38)
where B is a Lepagean equivalent of L [12].

A contact derivation ¥ (3.9) is called variational if the Lie derivative (3.8) is dy-exact, i.e.,
LyL =dyo,o € Ogg’_l [Y]. A glance at expression (3.8) shows that: (i) a contact derivation
¥ is variational only if it is projectable onto X, (ii) ¢} is variational iff its vertical part ¥y
is well, (iii) it is variational if v|§L is dy-exact. By virtue of item (ii), we can restrict our
consideration to vertical contact derivations

9= dav'o}. (3.9)
0<IAl
A generalized vector field v (3.7) is called a variational symmetry of a Lagrangian L if it
generates a variational vertical contact derivation (3.9).
A Lagrangian system on a fibre bundle ¥ — X is said to be a gauge theory if its
Lagrangian L admits a family of variational symmetries parametrized by elements of a vector
bundle E — Y as follows.
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Let E — Y be a vector bundle coordinated by (x*, yi, &"). Given a Lagrangian Lon Y, let
us consider its pull-back, say again L, onto E. Let /g be a contact derivation of the R-algebra
OY% [E], whose restriction

9 =Vplogy = Y dav'df (3.10)

0<IA]

to OgO[Y] C OgO[E ] is linear in coordinates £. It is determined by a generalized vector field
vg on E whose canonical projection

v J'EYS VE > Ex VY
Y

(see the exact sequence (3.12)) is a linear V'Y -valued differential operator
v= Z vhE (xt, y5)ELD; 3.11)
0<|E|Sm
on E — Y — X. Let ¥g be a variational symmetry of a Lagrangian L on E, i.e.,
Ly, L =dyo.
Then one says that v (3.11) is a gauge symmetry of a Lagrangian L.
Remark 3.1. Note that any generalized vector field v (3.11) gives rise to a generalized vector

field vg on E and, thus, defines a contact derivation g of OgO[E ]. Indeed, let us consider the
exact sequence of vector bundles

0—- WE—>VE—>ExVY -0, (3.12)
Y

where Vy E is the vertical tangent bundle of E — Y. Its splitting I" lifts v to the generalized
vector field vg = I" o v on E such that the Lie derivative

Ly, L = v|SL +dy(9]E,) (3.13)

depends only on v, but not a lift I".

Remark 3.2. If v (3.11) is a gauge symmetry, we obtain from the first variational formula
(3.13) the weak conservation law

0~ dy(®EL — o), (3.14)
where
J=9|8 =) I Erw;, (3.15)
0<[A|

is a Noether current.

4. Noether’s second theorem
Let us start with the notion of a Noether identity.

Definition 4.1.  Given a Lagrangian L (2.5) and its Euler—Lagrange operator §L (2.13),
let E — Y be a vector bundle and A a linear differential operator of order 0 < m on the
composite bundle (2.12) with the values in the density-dual E"(1.1 ) of Ewhich obeys condition
(1.2). This condition is called the Noether identity, and A is the Noether operator.
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Given bundle coordinates (x*, y',y;) on the fibre bundle (2.12) and (x*, y’, £") on E, the
Noether operator A is represented by the density

A=AEw= § ALD (x, yg)ym.g’w e OME x V*Y], o< || <m.  &.1)
Y
0<|AlSm

Then the Noether identity (1.2) takes the coordinate form
Z AN EE w = 0. 4.2)

O |AISm

Theorem 4.2. Ifa Lagrangian L (2.5) admits a gauge symmetry v (3.11), its Euler—Lagrange
operator obeys the Noether identity (4.2) where the Noether operator (4.1) is

A=nw)= Y DPldz(F)Eeo= ) @ity e,

0|2 |<m 0 |A|Sm
iA |S+A| ~IZ] i, S+A *3)
i, — + 1,2+
nw), " = E =1 Cigindsv, =70
O<IZI<m—|A|

Conversely, if the Euler—Lagrange operator of a Lagrangian L obeys the Noether identity
(4.2), this Lagrangian admits a gauge symmetry v (3.11) where

v=nA)= Y (DTds(AFTE) = Y nA)RES,  (44)

o<IZ|I<m oA ISm
nAyt =y (—D)EAICIEL | de ALEA, (4.5)
0<|Z|<m—A]

Proof. Given an operator v (3.11), the operator A = n(v) (4.3) is defined in accordance
with theorem 8.1 in the appendix. Since the density

V8L = v Ew = Z VhEELEiw

0<|EISm
is dy-exact, the Noether identity
S(WJSL) =n(w)odL =0

holds. Conversely, any operator A (4.1) defines the generalized vector field v = n(A) (4.4).
Due to the Noether identity (4.2), we obtain

0= Y &Falrd&o= Y (—D"Nd\(E A Ew+dyo

0<|AlSm O<|A|Sm
= Z Uf‘Eéé&w+dHG =v]|S8L +dyo,
0<|EI<m
i.e., v is a gauge symmetry of L. O

By virtue of relations (1.3), there is one-to-one correspondence between gauge symmetries of
a Lagrangian L and the Noether identities for § L.
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Example 4.1. If a gauge symmetry
v=(vE +v"E)0; (4.6)

is of first jet order in parameters, the corresponding Noether operator (4.3) and Noether identity
take the form

A =[(vf = duvf™)3, = v, )8 o, .7
[Vigi — d.(vi"E)]E w = 0. (4.8)

Any Lagrangian L has gauge symmetries. In particular, there always exist trivial gauge
symmetries

v= nMrERS,  Mph =) TN TsE, TN = TR,
A >
corresponding to the trivial Noether identity

Y TINEdsgidng = 0.

T,A
Furthermore, given a gauge symmetry v (3.11), let E/ — Y be a vector bundle and / a linear

differential operator on some composite bundle E/ — Y — X, coordinated by (x*, y', E),
with the values in the vector bundle £ — Y. Then the composition

’r_ _ i Agrsq. n,A __ i, E+X r, &
v =voh=uv"§,0;, vt = E E v F T dsh T
E+E'=A 0|2 |<m—|E|

is a variational symmetry of the pull-back of a Lagrangian L onto E’, i.e., a gauge symmetry.
In view of this ambiguity, we agree to say that a gauge symmetry v (3.11) of a Lagrangian L
is complete if any different gauge symmetry v, of L factorizes through v as

vV=voh+T, T ~ 0.
A complete gauge symmetry always exists, but the vector bundle of its parameters need not
be finite dimensional.
Accordingly, given the Noether operator (4.1), let H be a linear differential operator on
E" — Y — X with the values in the density-dual E” (1.1) of some vector bundle E’ — Y.

Then the composition A’ = H o A is also a Noether operator. We agree to call the Noether
operator (4.1) complete if a different Noether operator A’ factors through A as

A/=HOA+F, F =~ 0.

Proposition 4.3. A gauge symmetry v of a Lagrangian L is complete iff the associated
Noether operator is also.

Proof. The proof follows at once from proposition 8.2 in the appendix. Given a gauge
symmetry v of L, let v’ be a different gauge symmetry. If n(v) is a complete Noether operator,
then

n() = Hon()+F, F ~0,
and, by virtue of relations (1.4), we have
v =von(H)+n(F),

where 1(F) =~ 0 because I is a differential ideal. The converse is similarly proved. |
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5. Reducible gauge theories
Let us extend Noether’s second theorem to the analysis of reducible gauge systems.

Definition 5.1. A complete Noether operator A % 0 (4.1) and the corresponding Noether

identity (1.2) are said to be N-stage reducible (N = 0, 1, ...) if there exist vector bundles

Er — Y and differential operators Ay, k =0, ..., N, such that:

(i) Ay is a linear differential operator on the density-dual fi_l Y > XofEr1 > Y

with the values in the density-dual f,t of Ex, where E_1 = E;

(ii) Ay %0 forallk =0,...,N;

(iii) Aro Ay = O0forallk =0,..., N,where A_; = A;

(iv) if A} is another differential operator possessing these properties, then it factors through
Ay on-shell.

In particular, a zero-stage reducible Noether operator is called reducible. In this case, given
bundle coordinates (x*, y', €,) on E " and (x*, y', £0) on Ey, a differential operator A reads

Ao = Z ArEEE . (5.1)
0<IE|<mo

Then the reduction condition Ay o A =~ 0 takes the coordinate form

dooAEdz | Y Ay, | & ~0, (5.2)

O<IE|Smo O<IAlSm
i.e., the left-hand side of this expression takes the form
Z M;l:(;):y):i "o,
0S| <mo+m
where all the coefficients M:* belong to the ideal /.
Definition 5.2. A complete gauge symmetry v % 0 (3.11) is said to be N-stage reducible if
there exist vector bundles Ey — Y and differential operators v*, k =0, ..., N, such that:

(i) ¥ is a linear differential operator on the composite bundle Ex, — Y — X with values in
the vector bundle E,_1 — Y ;
(i) vF #%0forallk =0,...,N;

(iii) v* 1 o UK & Oforallk =0,..., N, where vk k= —1, stands for v;
(iv) if v'* is another differential operator possessing these properties, then v'™* factors through
k
V" on-shell.

Theorem 5.3. A gauge symmetry v is N-stage reducible iff the associated Noether identity is
also.

Proof. The proof follows at once from theorem 8.1 and proposition 8.2 in the appendix. Let

us put Ay = n(v¥), k =0,...,N. If u¥ ~ 0, then n(v*) &~ 0 because I; is a differential

ideal. By the same reason, if v*~! and v* obey the reduction condition v*~! o ¥ & 0, then
N o vf) = n(") o n(h > 0.

The converse is justified in a similar way. The equivalence of the conditions in items (iv) of
definitions 5.1 and 5.2 is proved similarly to that in proposition 4.3. (Il
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Remark 5.1. Let a gauge symmetry v (3.11) be reducible. Given bundle coordinates
(x*, y', £0) on E, the differential operator v reads

0 _ A gro
v o= E U6 Or,
O IA[Smo

and the reduction condition v o v° ~ 0 takes the form

i,8 r,Agro .
E v, dg E v 6N | 9 & 0.

O<IElSm O<|A[<mo

In particular, it follows that the Noether current J (3.15) vanishes on-shell if

ro__ 2 : r,Agro
é - Uro A

O<[A[Smo

and, consequently, its components J* are not independent.

6. Example I

This example addresses the gauge model of principal connections on a principal bundle
P — X with a structure Lie group G whose automorphisms need not be vertical. In a general
setting, the gauge-natural prolongations of P and the associated natural-gauge bundles can be
considered [6].

Principal connections on a principal bundle P — X are represented by sections of the
quotient

c=J'P/G— X, 6.1

called the bundle of principal connections. This is an affine bundle coordinated by (x)‘, a{)
such that, given a section A of C — X, its components A} = a} o A are coefficients of the
familiar local connection form (i.e., gauge potentials). We consider the GDA O} [C].
Infinitesimal generators of one-parameter groups of automorphisms of a principal bundle

P are G-invariant projectable vector fields on P — X. They are associated with sections
of the vector bundle 7¢ P = TP/G — X. This bundle is endowed with the coordinates
(x*, T* = **, £") with respect to the fibre bases {9, , e,} for T; P, where {e,} is the basis for
the right Lie algebra g of G such that [e,, e, ] = c;q e If

u=ud;, +u'e,, v=10"9 +ve,, (6.2)
are sections of 7 P — X, their bracket reads

[, v] = "9, 0" — v"0,u)0, + (w00 — v 0" + ) uPv?)e,.
Any section u of the vector bundle 7 P — X yields the vector field

uc = ud;, + (c;qafuq +ou” — a;aku“)aj (6.3)
on the bundle of principal connections C (6.1) [9].

In order to describe a gauge symmetry in this gauge model, let us consider the bundle
product

E=CxTgP, (6.4)
X

coordinated by (x*, a,, t & ’). It can be provided with the generalized vector field

A
v = v = (ch,alE1 + & —a 1) — t'ay, )0} (6.5)



Noether’s second theorem in a general setting 5339

With a subbundle VP = VP/G — X of the vector bundle T P coordinated by (x*, £7),
we have the exact sequence of vector bundles

0— VgP —>TgP — TX — 0.

The pull-back of this exact sequence via C admits the canonical splitting which takes the
coordinate form

™9, +&"e, = rx(a;\ + a;e,) + (S’ — r’\a;)e,. (6.6)
Due to this splitting, the generalized vector field (6.5) is brought into the form
v=(ch,alg !+ & + " F], ), " =§& —1al. (6.7

This generalized vector field is a gauge symmetry of the global Chern—Simons Lagrangian
in gauge theory on a principal bundle with a structure semi-simple Lie group G over a three-
dimensional base X. Given a section B of C — X (i.e., a background gauge potential), this
Lagrangian reads

L= [%af,fne“ﬁ’”ag' (]-'gy Len aga)‘f) — %an(,fneaﬁ” Bf(F(B)gy — Len BgB}‘f)

“ 3%pq 3%pq
_ G .afy mpn 3
dy (amns ag BV)] d’x, (6.8)
roo__ ro__ r r P nq ro __ T r P q
F(B)m = 8ABM 8“Bk+cqux B/t’ ]:Mt =a;, —a, +c,a,a,,

where a© is the Killing form [5, 11]. Its first term is the well-known local Chern—Simons
Lagrangian, the second one is a density on X, and the Lie derivative of the third term is
dy-exact due to relation (3.3). The corresponding Noether identities (4.8) read

halEl —di(E)) =0, (6.9)
—a,E +dy(a,El) =0. (6.10)

The first one is the well-known Noether identity corresponding to the vertical gauge symmetry
v= (c;qafé" +£])o}.

The second Noether identity (6.10) is brought into the form
—ay, [, al & — di(&)) ] + F 8l =0,

nr
i.e., it is equivalent to the Noether identity F; #8} = 0, which also comes from the splitting
(6.6) of the generalized vector field v. This Noether identity however is trivial since 73, = 0
is the kernel of the Euler—Lagrange operator of the Chern—Simons Lagrangian (6.8).

In order to obtain a gauge symmetry of the Yang—Mills Lagrangian, one should complete
the generalized vector field (6.5) with the term acting on a world metric.

Let LX be the fibre bundle of linear frames in the tangent bundle 7TX of X. It is a
principal bundle with the structure group GL(n, R), n = dimX, which admits reductions to
its maximal compact subgroup O (n). Global sections of the quotient bundle ¥ = LX/O(n)
are Riemannian metrics on X. If X obeys the well-known topological conditions, pseudo-
Riemannian metrics on X are similarly described. Being an open subbundle of the tensor
bundle V2T X, the fibre bundle X is provided with bundle coordinates o#”. It admits the
canonical lift

0
Ao P
of any vector field u = u”9; on X. We describe the gauge system of principal connections and
a dynamic metric field on the bundle product

E=CxXxTgP, (6.12)
X X

us = u*d + (0P, u® + c*d,u?)

(6.11)
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coordinated by (xx, al,o%, t* & ’). It can be provided with the generalized vector field

v=(c,al& +& —a ) —t"a), )0} + (01 + o' tf - tho?)

" (6.13)

This is a gauge symmetry of the sum of the Yang—Mills Lagrangian LYM(]-';ﬁ, 0’“’) and a
Lagrangian of a metric field. The corresponding Noether identities read

¢ arEl —di (&) =0, —al, & +dy(al,E)) — 0P Eup — 2d, (6 Eup) = 0.

The first one is the Noether identity (6.9). Then the second identity is brought into the form

T &8 =2V (0" Eup) = 0,

where V,, are covariant derivatives with respect to the Levi-Civita connection

K = dx* ® (8A + K,\”V)E”éﬂ), K", = —%O’Mﬁ(O’MgV +0ugn — O'ﬂxv)-

7. Example II

Let us consider gauge theory of skew symmetric tensor fields. These are exterior forms on
a base manifold X of degree more than one. We need not specify a gauge model, but refer
to the topological BF theory [4]. This is a theory of two exterior forms A and B of form
degree |[A| = dim X — |B| — 1. Another example is a gauge theory of an exterior form
A in the presence of a background metric on X whose Lagrangian is similar to that of an
electromagnetic field.
A generic gauge system of skew symmetric tensor fields is defined on the fibre bundle
Y =AT*X@AT*X, (7.1)
X X X

coordinated by (x)‘, A#]“M, Bvlqu). The corresponding GDA is O} [Y]. There are the
canonical p- and g-forms

1 0
A= EAM..M dx™ A Adx?r € OLP[YT,
1 (7.2)
B = — By, dx" A-- Adx™ € OY]
q!
on Y. A Lagrangian of the above-mentioned topological BF theory reads
LB]::A/\dHB, p+q=l’l—1 (73)

A gauge symmetry of a generic gauge system of skew symmetric tensor fields, e.g., of the
Lagrangian (7.3), is the following. Let us consider the fibre bundle

—1 —1
E=Yx'An T*X x'A T*X, (7.4)
X X X X
where

-1 -1
PN Tx <A TrX
X

is the fibre bundle of gauge parameters with coordinates (x’\, Erttp1s éul...uq,l). Let
1

= W%...MM
1 vy Vy_1 0,g—1
S = mévlquildx A Adxet g Oo&) [E]

£ dx™ A - AdxPrt e Ogép_][E],
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be canonical exterior forms like (7.2) on E (7.4). The above-mentioned gauge symmetry is
given by the generalized vector field

d 0
v = d;l,. 8#2...;1,,, r + dvlgvz...vq F» (75)

ity iy
which acts on the exterior forms A and B (7.2) by the law

Ly, A = dpe, Ly, B = dyé. (7.6)
In accordance with formula (4.8), the corresponding Noether identity takes the form

— oy E =0, 8y, dy €1 =0, 7.7
For instance, the equalities
Ly, Lgr = (Ly,A) AdyB + AN (Ly,dyB) = dye AdyB + AN (Ly,dyB)

=dy(eNndyB)

show that the generalized vector field (7.5) is a gauge symmetry of the Lagrangian Lgp (7.3).
This Lagrangian provides the Euler—Lagrange equations

dyA =0, dyB =0,
and the Noether identity (7.7) is brought into the form
deHA = 0, deHB =0.

It should be emphasized that the gauge symmetry (7.5) by no means exhausts all variational
symmetries of the Lagrangian Lgg. Any generalized vector field v on Y such that Ly A is
dy-exact and Ly B is dy-closed is a variational symmetry of this Lagrangian.

The gauge symmetry v (7.5) is reducible. Without loss of generality, let us put g > p.
Then v is g-stage reducible as follows. Let us consider vector bundles

p 2 q—k—2

—k—
Er=Yx A T*Xx A T*X, 0<k<p-2,
X X X X
Ei=Y xRx A TX, k=p—2, (7.8)
X X X
q—k—2
Er=Yx A T*X, k>p-2,
X X

over Y provided with fibre coordinates

(8/Ii1~~/t,)fk72 ’ g‘lflm”q—k—z)’ (O[, E\f)li'%)q—p)’ (E\Iflm”q—k—z)’

respectively. Then the differential operators

ad d
_ 0 0
vy = dlble/‘*%n//«p—l 7381“ o +d\)1€v2...v¢,,1 85,,] o )
el Vg
d, e g 0 0<k 2
Up = Mlguz...up,k,| 9ek—1 + vlsvz...vq,k,l a%.k_l > <K< p—2
M1 p—k—1 V1w Vg—k—1
d d
— - p—2 v
Up2 =dpa——+dy§]7Y YT
" Evlqu—pﬂ
d
— k . _
v =dy§,, pEr , k>p-2,
Vi Vg—k—1

satisfy the conditions of definition 5.2.
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Accordingly, there is a family of associated k-stage Noether operators Ay. Let the density
duals E° — Y, E,t — Y of the vector bundles £ — Y (7.4), Ex — Y (7.8) be provided with

fibre coordinates

(AR g"l---"q—l ), (E;{umﬂp—k—z’ EZI“‘V‘I*"*Z)7 (E, g;l;;q—p)’ (—Zl---vq—k—Z)’

respectively. Then we have
AO = _[80 dll-lgmmupil + é:o dmg‘)b""q*l]w’

W2 fp—1 V2...Vg—1
Ay = —[Eﬁzmupfkildmgf:i'”"*k” +Efzmuqfkfld\,l_zl_”l‘vqfkfl]a), 0<k<p-—2,
Ap_z = —[Oldugzi3 + Elﬁi-zvqu,,ldvlg;t;qi“l]a)’
Ai=—E 0, k> p -2,

8. Appendix. Differential operators on dual fibre bundles

GivenafibrebundleY — X,let E — Y, QO — Y be vector bundles coordinated by (x*, yi, EN)
and (x*, y', ¢%), respectively. Let E*, Q* be their duals and E', Q" their density-duals (1.1)
coordinated by (x*, y', £,), (x*, ¥, g,) and (x*, ', £,), (x*, ', q,), respectively. Let v be a
linear Q-valued differential operator on £ — Y — X. It is represented by function (2.10):

v=1'ge = Y v (xh yE)ERga € O%E x 0", 0<|Z| < m. (A1)
0<IAISm

Let A be an m-order linear differential operator on the density-dual 0 >Y—>XofQ—>Y
with the values in the density-dual E " of E. Tt is represented by the function

A= Z AL (x*, Y2 )T ek € OLIE)* x 071, 0<IZ| < m. (A.2)
0<IAl<m ’

Let Jw be a volume form on X such that &, =J& and&" = J ?’. Then function (A.2) defines

the density A = AJw which reads

A=AEw= E AN (5, ¥5)G peE 0 € OY'E x 01, 0< || <m.  (A3)
Y
oA ISm

Theorem 8.1. Any linear Q-valued differential operator v (A.1) on E — Y — X yields the
—*
linear E -valued differential operator

W)= Y DPdz ()5 o= Y nW)ATaE o,
0<IZIsm O<IAlSm
(A4)
n(v)(:,A — Z (_1)‘2+A|C|‘)§+‘-A\d2 (Uf,zm)’
O<IE|Sm—|A]

on E* — Y — X. Conversely, any linear E"-valued differential operator A (A.3) on
Q* — Y — X defines the linear Q-valued differential operator

n(A) = Y (=DFds(AYTE g, = Y (A Erd.
0<IZ|sm O<|AISm
(A.5)
n(A)f’A — Z (_1)|2+A\C||§LAldz (Azr/z,)}A)7
O<IZISm—|A]
on E — Y — X. Relations (1.3) hold.
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Proof. One must show that the differential operators given by the local coordinate expressions
(A.4) and (A.5) are globally defined. The function v (A.1) yields the density

= > uvrEg.0 € OE x 0*]. (A.6)
0<|AI<m g

Q|

Its Euler—Lagrange operator
SO =&dy Ao+ E dE" Aw+E%dg, Aw
takes its values in the fibre bundle
V(ExQ)®/\TX (A7)

ExQ* X
Y

where V*(E x Q%) is the vertical cotangent bundle of the fibre bundle E x Q* — X. There
Y Y
is its canonical projection

ap : V¥E >; 0*) - V'E - VJE, (A.8)

onto the vertical cotangent bundle Vi'E of E — Y. Then we obtain a differential operator
(g 0 8)(U) on E x Q* with the values in the fibre bundle V;E ®7\T*X . It reads
Y E

(@ od)@) =& d @w= Y (-1)"d\(v""7,)dt @,
0| AI<m

where {d£"} is the fibre basis for Vy E — E and the tensor product ® is over C*°(X). Due to
the canonical isomorphism VyE = E*x E, this operator defines density (A.4). Conversely,
Y

the Euler-Lagrange operator of density (A.3) takes its values in the fibre bundle (A.7) and
reads

S(A) =& dy Ao+ & dE" Aw+E%g, A w. (A.9)

In order to repeat the above-mentioned procedure, let us consider a volume form Jw on X and
substitute dg, A @ = Jdg, A w into expression (A.9). Using the projection

ag : V¥(E >; 0" — VyO*

like o (A.8) and the canonical isomorphism Vy Q* = Q x Q*, we come to the density
Y

Y (=DM (ALAE)gu T € OLE x Q7]
0<IAI<m !

and, hence, function (A.5). Relations (1.3) result from relation (2.19). O

Relations (1.3) show that the intertwining operator 1 (A.4) and (A.5) provides a bijection
between the sets Diff(E, Q) and Diff(Q*, E *) of differential operators (A.1) and (A.3).

Proposition 8.2. Compositions of operators v o v' and A’ o A obey relations (1.4).

Proof. 1t suffices to prove the first relation. Let v o v’ € Diff(E’, Q) be a composition of
differential operators v € Diff(E, Q) and v’ € Diff(E’, E). Given fibred coordinates (§") on
E — Y, (e?)on E' — Y and (g,) on Q — Y, this composition defines density (A.6)

7 _ a.A mE =
UOU—E vy dA(E v, ez>qaa)
A p



5344

D Bashkirov et al

Following relation (2.16), one can bring this density into the form
pBTEED SEICINEAMURES ST B
> A > A

Its Euler—Lagrange operator projected to V' E'QT*X is
b

2

b

(=DPlds (vp™ Y n @)1, | def ©
A

= ZU(U/)ZEdZ ZU(U)‘:‘AEM de’ @ w,
b3 A

that leads to the desired composition 7(v’) o n(v). O
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